CRL Specifications
Version 1.2.1

Summary

[a—

Introduction — Motivation and Goal
Structure and Behavior

. CRL Command description

a) Simple

b) Complex

c) Command Rewriting

CRL constructor

Single Robot Scripting

Multiple Robot Scripting

Sensory Extension

w

No e

1. Introduction

The purpose of CRL (common robotic language) is to describe a single or multiple
behaviors/actions of a single or of a group of robots. CRL language describes the flow of
the control commands and the state of the robot by a structured approach allowing to
represent the robot as a set of agents organized in a hierarchical tree. Thus at any time
CRL gives precise information about the robot external activity and internal state. Each
agent in this tree is able to process a set of commands that is by default the same for each
agent. CRL is designed to be used on non-mobile humanoid robots and allows to
precisely describe behavior of such a robot (or of a group of robots), and thus is a
framework for robot-robot or human-robot interaction.

There already exists a lot of languages for hardware, computer and other robotics
related fields. The reason for creating CRL is mainly because we are focusing on features
not described by most of the existing languages; features we are interested in are
behavioral, psychological and communication features for robots and devices having
such possibilities of expression. CRL is powerful enough to describe any type of actions
of the behavioral robot and this is mainly because:

» [Itis designed to be arbitrary modifiable: this means no prescribed set of key words
is defined beside the default package controlling the head. This allows to design
human-readable behavioral scripts such as theater plays, discussion or just simple
non-verbal expression.

» Its grammar is specified by a file (that can define as many rules as the complexity
of the robot requires) or the default (built-in) set of commands can be used

» Is multileveled; the language is suitable to describe both a single robot and all its
behavior so as multiple robots and their timing, cooperation and coordination of
individual activities.

» It is hierarchic, thus allows embedded commands within other commands. As
shown later CRL, uses

CRL is 100% compliant with XML thus the parser is either a DOM or a SAX parser
as described by the Sun Corporation. The description can be found either by visiting the
http://java.sun.com and do a appropriate search or directly on the web site
http://www.saxproject.org/ for the SAX parser or
http://www.mozilla.org/prgjects/blackwood/dom/ for the DOM parser.

2. Structure and Behavior

CRL is very simple as in syntax and structure. In general the command has the
following form:
<Destination><Commard>Parameters
or
<Destination><Command>

but because the language is XML compliant the complete syntax is represented
as:

<Destination><Commard>Parameters</Command></Destination=

The 'Destination’ tag represents the robot or one of the robot's subpart that is to
execute the given command. It can be the key word 'robot' or any other existing
(previously created) robot part such as head. The 'Command' tag is the name of the
command it self (described later). Finally the 'Parameters' tag represents the possible (if
any) parameters of the given command.

The basic CRL is defined for everyrobot and each robot part so as each element of
the robot can be controlled by a set of minimal commands. CRL can be modified by
simply inserting tags recursively defined on predefined commands and robot elements
(All yet specified tags are at the end of this file). The idea of the CRL is as already
mentioned to have a common description of robotics (smart robotics) devices designed
for communication and interaction either with humans or with other robots via human
like interaction. The CRL is suitable for human reading and thus all tags are expressed in
English. This allows in general creating files describing groups or single robots and their
activity in time and space so as activity vice versa other robots.

As already mentioned in the introduction, CRL breaks the robot into agents. For
example a simple robotic head can be designed with four motor degrees of freedom plus
the speech synthesizer. Each device belongs to a higher level hierarchy designed by the
user. This higher level is a bio-mimetic representation of the robot. This means that the
robot is split into a set of robot elements (RobotParts) that each can contain a set of
devices. The robot above will have a Mouth that is using one servo to move the jaw and
the speech synthesizer. It will also have Eyes that will be using two servos (vertical and
horizontal movement). Thus the robot is now represented by two higher level agents
Mouthand Eyes, and from five low level device agents.

The general behavior of CRL allows to generate N simultaneous commands,
where N is the number of higherlevel agents. The example form above will be then able
to run two simultaneous commands at a time.

CRL is fed to the robot through a CRL parser, that parses all the commands form
the script into the memory, and then the robot executes the script in received order.

3. CRL Comumand Description

The following commands are directly implemented in the CRL parser in order to
provide a already functioning robotic platform. There are two global classes of
commands (that are explained in the Section Single robot scripting): the direct
commands affect the whole robot and the indirect commands are used to address single
robotic parts. Among these two classes of commands there are two subgroups: simple
commands and complex commands.

a) Simple Commands

By default all given commands are simple. The name comes from the fact that
such a command is a single instruction to a single robot part. For example command
<hand><move>12 46</move></hand> places two servos of the hand on the position 12
and 46. Simple commands are the building blocks of CRL.

* The Direct Commands are:

o <sync> - synchronize the actions and object if they are children of this
node

o <wait>#- pause the robot for a given amount of time (in seconds). Note,
this command does not stop the robot instantaneously but rather waits
until all action in progress are finished.

o <flush>- clear all commands in the memory and wait until all parts of
the robot terminate their actions.

* The Indirect Commands are
o <move> # - move a given part to position defined in the range 0 — 100.
Note this command can be multi-variable for robot parts using more
than one servomotor.
o <close>- close the given robot part; put the servo to position MIN
o <open>- open the given robot part; move the servo to position MAX

* The Control Commands are

o <min>-the min of the servo range

o <max>- the max of the servo range
<speed> - the speed of servo
<accel> - the acceleration
<rate> - the speed for the speech generator
<react> - the reactivity of this robot part
<volum> - the volume for speech and recognition
<voice> - the voice for the synthesizer
<pitch> - the pitch of the voice
<waittime>- the step time for this robot part
<waitstep>- the size of the step to wait

O O O O O O O O O

o Thislistis to be extensively extended

» Example of objects (are arbitrary and depends on the user definition) that can be
addressed:

o

o O o O

<cheek> - each cheek canbe accessed individually
<eyes>- both eyes move only together

<mouth>

<eyebrow> - individual access

<eyelid> - individual access

* Finally some custom commands are available for specific robot parts and are
shown as example:

o

@)
@)

<smile>#- parameterized smile 0 — 100 (refer to the detail section to check
the size and number of parameters).

<frown># - same as above

<speak># - speak a sentence or a text with synchronized mouth
movements; general tag indicating the sequence is a speech command.
(Refer to the JSML web page:
http://java.sun.com/prodwcts/javamedia/speech/forDevelopers/JSML/
for the syntax defined for the Speech control).

<blink> - blinks the eyes; note a random blinking is already defined as a
automatic feature of therobot

The understanding of how this is working is pretty easy. Each # indicates the parameter
in a scale between 0 and 100 where 0 is defined as MIN and 100 is the MAX. The polarity
of MIN and MAX can be inversed by the user. Thus the command
<mouth><move>100</move></mouth> results in the biggest possible opening of the
mouth, also obtainable using <mouth><open></gpen></mouth>. The order in which the
CRL parser is working represents the hierarchy of the robot. The Figure 1 shows the
robot structure.

Drawing 1The Command Hierarchy of the CRL robot construct

b) Complex Commands

The second class of commands allows to create macros that can execute a
sequence of commands. For example command smile can be defined as a sequence of
movement, that would generate a happy behavior. Details are described later in this
document.

¢) Command Rewriting

Another feature of CRL is the command rewriting. For this assume the following
example. A command smile was defined in the face object and was parameterized
according to some specifications (number of degree of freedom, expression, etc.). Now if
someone wants to have different smiles but does not want to create a new command for
the simplicity of the script it is possible to parameterize t the smile command by writing
is as a normal movement command so as <smile></smile>becomes <smile>#</smile>.
In the case the number of parameters is correct the smile command will be executed
with the given parameters. In the other case where the parameters do not satisfy the
definition of command smile, only parameters fitting the definition will be used and the
invalid ones will be discarded.

The commands that CRL accept are mainly for the motor and and control
purposes. However CRL also allow to interface to the higher level of the robot. This
particular shortcut is is due to the fact that the motor control describes all motor control
while the higher level functions are more sensor oriented (e.g. Dance generator, Motion
Detector, etc). The syntax for commands to the higher level depends on what module is
being used. As in general the robot must be in particular preset on the motor side, the

higher level functions do not require complex command syntax. For example the
command dance is defined as:

<command>dance
<parameters>null null</parametes> dance <command><file>

</command>
other robot commands are:

<command>jollow //starts the motion following — requires camera
<parameters>null null</parameters> //follow <command>
</command>
<command>recogl//starts the speech recognition
<parameters>null null</parameters> //recog <command>
</command>
<command>maod//sets the robotin particular mood
<parameters>null null</parameters> //mood <command><params>
</command>

4. Robot Constructor

A sub part of CRL is used to describe the current robot and construct a software model
of the controller. The constructor file specifies the initial parameters of the robot so as
the robot architecture and commands. This file (as any other CRL command script) is
defined by an opening tag <crl> followed by the <robot> defining tag.

<crl>
<robot>robot

First direct commands can be declared. Default direct and indirect commands are not
used in the constructor as they come by default with the software and are hard encoded.
This robot has a single direct command “Dance”

<command>dance
<parameters>null null</parameters>
</command>

and with a single robot part “eyes”.
<part>eyes

Each defining robot part, must include the devices that this object controls. In this
case these are Servos 0 and 1 (position as appears on PCB where the Servos are
connected). The device section may optionally include the range of the Servos such as
shown here with the tag min and max. It can be noticed that the second servo is inverted
with respect to the original settings.

<devices>01
<min>1000</min>
<max>0 70</max>
</devices>

Finally the robot comes with a defined acceleration command for the eyes robot part.
This is a simple command as can be seen by the definition.

<command>accel
<parameters>null null</parameters>
</command>
</part>
<robot>
<crl>

More complex example is the same robot with complex init command. This command
allows to set the robot part eyes to be set to a particular state: in this case it reset the servo
range to 0 to 100 on both servos and set both of them to a speed and acceleration.

<crl>
<robot>robot
<command>dance
<parameters>null null</parameters>
</command>
<part>eyes
<devices>01
<min>100 0</min>
<max>070</max>
</devices>
<command>init
<parameters>speed 50 20 </parameters>
<parameters>accel 10 10 </parameters>
<parameters>min 0 0 </parameters>
<parameters>max 100 100 </parameters>
</command>
</part>
<robot>
<crl>

The command init allows to set the robot part to a desired initial state. It is possible to
create more complex commands in order to achieve more complex behavior. An
example would be to make the robot part eyes move in a certain way.

<command>coolmove
<parameters>speed 50 20 </parameters>
<parameters>accel 10 10 </parameters>
<parameters>00 </parameters>
<parameters>10 100 </parameters>
<parameters>accel 10 10 </parameters>
<parameters>10 10 </parameters>
<parameters>100 100 </parameters>

</command>

Note that there is one implicit command included in the robot. This command is
move. Not only that but the root has a set of implicitly created commands. These

commands are mainly settings but also include the command for move and speech. In
general it is good usage to declare move for every robot part in the constructor as follows

<part>neck

<command>move
<parameters>null nul null null</parameters>
</command>

Defined commands can be simple such as move above or such as coolmove(above
above). The syntax for definition is similar and is explained in table bellow:

Simple Command Complex Command
Single parameter line: Multiple Parameter Lines:
Only parameters (e.g. '100 null') Whole command (e.g. 'max 45 50")
Keywords allowed (e.g. Null, ignore) Value restricted (e.g. '50 23")

The idea behind this definition is to allow to construct scripts for behavior as a single
command and also to allow to control it on the fly.

In general all robot parts and commands are equivalent in the way they are build and
used but there are some specifications that must be followed. Moreover as all integrated
robot parts and devices are designed using the BioDevice/BioRobotPart specifications,
they accept but do not understand all the commands. This allows to send wrong
commands to the robot and being able to recover.

To use the speech, a robot part containing at least the speech synthesizer and one
servo, as they are going to be synchronized during the speech process. (The servo can be
moved without the speech). This is also the start of integrating multiple servos in mouth
in order to allow tongue, lips, etc movement. The constructor for the robot part mouth
is shown below.

<crl>
<part>mouth

<devices>01
<min>100 O</min>
<max>070</max>

</devices>

<command>init
<parameters>speed 50 20 </parameters>
<parameters>rate 50 20 </paramerters>
<parameters>accel 10 10 </parameters>
<parameters>min 0 0 </parameters>
<parameters>max 100 100 </parameters>

</command>

<command>move
<parameters>null </parameters>

</command>

<command>speak
<parameters>null </parameters>
</command>
</part>
<crl>

The command move takes only one argument as does the command speak. This allow
to minimize the size of the CRL scripts .

5. Single robot scripting

The CRL scripting allows to describe behavior for a single robot so as for multiple
robots. This section describes how to generate CRL script for a single robot. To control a
robot in CRL types of tags are used: direct and indirect.

1. Direct tags describe temporal constraints and commands affecting the whole
robot. Direct tags have for consequence time conditions and help to organize on a
time scale a complex set of behaviors or actions so as allow to synchronize robot
behavior. In general from the robot point of view direct tags are command to the
robot as a single entity and thus affect the whole robot.

2. The indirect tags describe directly an action or a behavior of a robot sub-part.
Indirect tags can be seen as local commands because they are specifically send to
arobotic part such as an arm, mouth or eyes.

The construction of the CRL commands follows the general scheme described in
the Introduction, however more complex or simpler commands can be also created. In
general, the more complex commands are used as Macros, and allow one level deep
recursion in CRL. For example assume, we want to create a command called 'no' for the
robot part neck, that represents the robot waving its neck back and for left-to-right and
back (representing behavioral negation). One can either write:

<neck><move>1023 0</move></neck>
<neck><move>1023 100</move></nedc>
<neck><move>1023 0</move></neck>
<neck><move>1023 100</move></nedc>

ora corresponding macro:

<neck><no>
<move>1023 0</move>
<move>1023 100</move>
<move>1023 0</move>
<move>1023 100</move>
<no></neck>

that can be invoked by the call <neck><no><no></neck>in the CRL script. Also, the robot
in general is not equipped with macros that must be designed and defined by the user.
The simple commands (defined by default or non-aggregate commands) allows
parameters as shown in the previous example (each line with move command specifies
where the device should move), while the aggregate commands do not allow parameters.

The CRL specifications are similar such as described in the Introduction, but
some restrictions exists on the:

» Tags have no parameters and all variables are between tags (arguments). This
means that for example if the robot wants to move left the sequence of commands
will be looking something like this: <head><move>10</move></head> In this
particular case, the servo position adjustment with respect to the environment is
0 —right, 50 — middle and 100 - left.

» Each tagcan representeither an action or an object.

Because we are using the JSAPI (Java Speech API) and JSML (Java Speech Markup
Language) and it already has a parser each time the tag <speech> is encountered by the
parser the tag is modified into <jsml> This is mainly done in order to increase the
understandability of the script that might get pretty long. However, the usage of JSML is
restricted so far.

The behavior defined by a CRL script is analyzed in similar top-down hierarchy to
the picture. That is when a tag is met, the issued command by the parser is sent directly
to the robot, which first checks if the tag is a direct command. If not the tag is analyzed in
order to determineif it is a valid robot part. If yes the subsequent command is sent to the
robot part which either executes it or not. The following example shows the idea.

e <crl> - tag defining CRL language
e <robot> - tag defining a robot device. All commands inside of this tag will be sent to one unique
robot
* <Sync> </sync> - end of synchronized block - this tag waits until all activity of the robot is
done and only then allows next command to be executed.
- <face> - tag defining a motor sequence of commands
<smile> 50</smile> - tag defining a complex facial expression
<normal></normal>- tag defining the resting facial expression
- </face> - end of commands to the face
- <eyes>
<move>50</moves>
- </eyes> - tag defining the movement of the left eye
- <mouth>- mouth is being addressed
<speech> - beginning of the speech
This a short paragraph JSML
</speech> - end of speech
- </mouth>
* <eye>- commands for eye
- <blink> 1</blink> - here left is defined as the left eye and will blink

e <leye>
e <face>

- <smile>10</smile>- once the blinking is over the robot will smile
e </face>

e <mouth>
- <speech> - then speech is initiated
- My name is cynthea,
- </speech>

e </mouth>

e <wait>5</wait>

e <mouth>
- <Speech> - then speech is initiated
- andiam kinda happy
- </speech>
e </mouth>
* <wait>5</wait>
e <mouth>
- <pitch>- then speech is initiated
- 60
- </pitch>
e </mouth>
e <mouth>
- <speech>The cost of my construction is $50000
- </speech>
e </mouth>
e </robot> - end of script for this robot
e </crl> - end of script file

If you went through t the above example and the JSML documentation you
noticed the presence of <wair>inside of the JSML script. This means that without really
modifying the JSML syntax we inserted time precision in order to give more freedom to
the CRL. In this particular case the resulting action will be: “My name is Cynthia”, break
for 5 seconds and “and i am kinda happy”. The wait command in here is context
independent so as the wait command will be executed no matter what the other actions
of therobot are.

6. Multiplerobots scripting

Let's have a look on another example illustrating more in details the commands
<sync>and <wait>.

e <crl>
* <sync>-indicates the sequence of synchronized commands
o <robot>1- indicating the commands will be issued for the robot #1
<Sync> - indicates the following sequence of commands is synchronized
<eyes> - eye movement
e <move>50</move>
</eyes>
<mouth><open></opern></mouth>
</sync> - end of synchronized block inside for this robot
o </robot>
<robot>2- the second robot command sequence
o <mouth>
<speech> - speech init
<sayas>Hello this is not an exercise</sayas>
<wait>2</wait>
</speech>
o </mouth>
O <SYync>- begin a new synchronized command sequence inside of the robot 2

(@]

<eyelid> - begin the move sequence
e <both><close></close><both>
</eyelid>
<mouth>
* <speech>where are you going ?
e </speech>
</mouth>
o </sync>
o </robot> - end of second robot command sequence
* <Sync>- end of the synchronized group action
e <crl>

This example illustrates the other properties of CRL. First, from both of examples
it is obvious no indirect tags can be mixed so as no incoherent commands can be
created. Each time an action or a speech commands sequence is introduced in the script
the sequence must be finished before another one is described. To synchronize these
actions the keyword <sync> is used. Second, there is a strict order of tags. This means
that a CRL script can be a sequence of commands for a Single robots, a synchronized
sequence of commands for a single robot or a synchronized script for multiple robots as
shown in example 2. Other side features apparent are: the movements are parameterized
on a scale between 0 and 100; a eye movement with value of 50 will bring the eye in the
middle while 0 and 50 will be extremities of its movement. The wait commands
parameters are in seconds; we assume that with the current technology used for this
project this is precise enough with regards to the hardware and software speed.

In Development

e Relative parametrization — allow partial coordinates to be parsed correctly
e Sensory extension — CRL implementation of the Sensor command flow

