Connecting OpenCV to Java platform

Reto Toengi

ECE 578 Project 2005

Connection OpenCV to Java

Reto Toengi

Software Documentation
	Date
	Modification
	by

	03/22/2005
	Created
	Reto Toengi

	03/23/2005
	Review
	Reto Toengi

	
	
	

Content

2Content

3Abstract

3Project goal

3Project Solution

3System Architecture

3General overview

4Project resources

4Hardware

4OpenCV

4Visual Studio 6

4SWIG

4Java2

4SDK-1_4_2_04 (NetBeans IDE 3.6)

4Additional packages

5Computer Vision Dynamic Linked Library

6Building the connection with SWIG

6How does SWIG work

7SWIG Interface file

8SWIG precompilation command

8Settings for use of SWIG with Visual Studio 6

9Java Application

10Java Package Roebi

10Roebi (Main Class)

10ImPanel (Display Class)

10FaceVis (Display Class)

10ImPlayer (Processing Class)

11ImProcessor (Processing Class)

11ImWindow (Processing Class)

11ImUpdate (Helper Class)

12ManProcessor (Helper Class)

12OpenCVArray (Helper Class)

13Java Package facedetect

13CFacedetectApp (Accessor Class)

13facedetect (Accessor class)

13C++ Class facedetect

14Summery

14Appendix A Links

14C++ Source Code resource links

14OpenCV links

14SWIG links

14Java links

15Appendix B Manuals, Tutorials & Help

15OpenCV Manual

15SWIG Manual

15Tutorials & Help

15Java Tutorial & Help

15Visual Basic Tutorial

15OpenCV Tutorial

15Appendix C Project System

15Used Hardware:

15Used Software versions:

Abstract

Image processing is gaining more and more importance in the modern robotics. This asks for improvement of the existing technology. Another important factor is portability of the software to different platforms. Java offers the portability, but lacks on sophisticated and fast image processing algorithm. On the other hand there is the advanced Open Computer Vision Library which is fast but tied to the platform.
This project was about the connection between the two. General things can be done in the portable platform Java and the specialized resource consuming part can be outsourced to the fast native environment of C++. This makes only small modification needed in case of a platform change.
Project goal

The goal of the project was to make some advanced image processing features accessible for a Java application. The Idea was to use existing code using the OpenCV functionality and connect it to a Java application.
Project Solution

To make the communication between the library and the Java Environment more efficient it makes sense keep the image processing on the Java side on a minimum. For this reason I was looking for an application which does all the processing in the native environment and makes the results available through an interface.
I finally found on the internet an application which does facial expression recognition. This application consists of a class which offers methods to detect the facial features and expression. We only needed to make this class accessible to the Java platform.

The second part was to create the application in Java with the user interface. This application has not only to handle the video stream but also to display the features and the facial expression detected by the native language module.
System Architecture
General overview

The Java application running on the java virtual machine captures the video stream and passes it to the native environment. The native language module does all the computer vision operations which is in our case the facial expression recognition. The feedback allows then to visualize the detected features and expression.
The connection between the two software modules makes use of the Java Native Interface.

[image: image1]
Project resources

Hardware

I was working with my own PC notebook with extended memory running Windows XP Professional.

The camera used was Webcam from LOGITECH QUICKCAM with USB connection of the Robotic Lab.
OpenCV

The Open Computer Vision Library is a collection of algorithms and sample code for various computer vision problems. The library is compatible with IPL and utilizes Intel Integrated Performance Primitives for better performance.

The code can be downloaded from the internet. With the installation comes the documentation about the library. Although it might not be the latest version, it is full of valuable information about the techniques used.

In this project I was using beta 3.1 for Windows. I decided to use this version since the source code I was using does not compile with the newer version due to a changes in the “Haar functions”.

It comes also with a better installation program than the newer beta 4 version.

Visual Studio 6

The C++ part was compiled with Visual Studio 6. I have chosen this software, since all the code I wanted to use was previously compiled with that version. It also was for me easier to handle than the Visual Studio .Net 2003 from the Robotics Lab. I had trouble to get access to this Environment, but finally it worked.
SWIG

I was using the latest SWIG version available. At this time it is SWIG-1.3.24. It can be downloaded from the internet. It is available for various operating systems.
Java2

SDK-1_4_2_04 (NetBeans IDE 3.6)

The programming environment Java Software Development Kit can be downloaded from the internet. You can easy find it by searching for “Java sdk”.

This free development environment is not bug free. It is designed to bridge the time until the commercial products have implemented the latest language features. So if you have sometimes strange effects, it could come from the IDE. For my needs it was a quite comfortable and free tool to do the Java programming.

From experience with my environment:

· Every package you import into your code has to be mounted that the folder of your package appears in the mounted device.

· Make sure you do not mount several packages which includes folders with the same name (the first package in the mounting list will be used!)

· When you edit a class used in another class or package, it might happen that you need to refresh the folder in the list of mounted packages before the other class recognizes the change. Sometimes I had to exit the IDE and restart since I wanted to avoid unmounting and mounting certain file systems.

Additional packages

Java Media Framework is needed for certain used features with the image handling.

I also installed Java Advanced Imaging (JAI) API. But I am not sure if I really used any of those features.
Computer Vision Dynamic Linked Library

To find ready code which has some functions like “facial expression recognition” or “gesture recognition” is not easy. Fortunately found a webpage in England that offers such code.

The module I was using is called facedetect. It is an application which originates from a humanoid robot called Rodney. This application has a GUI written in Visual Basic and a Dynamic Linked Library with all the image processing written in C++.

[image: image6.wmf]
I intended to use the C++ DLL and replace the VB GUI with a Java GUI.

Building the connection with SWIG

SWIG is a software development tool that connects programs written in C and C++ with a variety of high-level programming languages. In our case we use SWIG to wrap a C++ class which offers some specific image processing functionality in a way, that we can use these functions in the Java environment.

How does SWIG work

The SWIG precompilation is operated on the header files of the classes and functions you want to interface. Therefore a SWIG interface file is needed which contains the specific commands to the SWIG.

As a result of the procedure you get the C/C++ wrapping code and the target platform accessor function code. The C/C++ wrapping code has to be linked with the original C/C++ source code to a Dynamic Linked Library file (in Windows) which can be later loaded and accessed from the target platform.

[image: image2]
The SWIG precompilation can be included into the project configuration of the Visual Studio Environment. As I read in the manuals, there is a similar way in the Linux/Unix environment.
SWIG Interface file

In most cases the SWIG interface file is very simple. It contains only the names of the header file which needs to be precompiled. In our case the file needed some definition and declaration more to wrap the pointers and references in a way, that we can make use of it from Java.

The following example shows the elements used in out SWIG Interface file:

[image: image3]
The elements in this SWIG Interface file are:

· The module name given to the created modules. It gets overwritten if different specified by the precompilation call.

· The header files which needed to be included for the wrapper file.

· An additional integer array declaration. Enables to create and access an unbounded C++ integer array from the Java platform.

· Special typemaps for the references used in the class methods

· Finally the complete header file to wrap the methods which have not been already maped.

A bigger problem so far represents an byte-array we want to pass from Java to the native environment. The solution for this problem is still on the way.

SWIG precompilation command
The precompilation command can be done by the command line interpreter or integrated in the make file. But the call remains the same. In the following example I show how we have been calling swig for our project.

[image: image4]
The package option saves us work and time to edit the created files afterwards. It includes the package declaration into the created Java files.

Note: The Source code language is by default on C. If you need to wrap C++ code, you’ll have to add the c++ option as we did in our project.

Settings for use of SWIG with Visual Studio 6

The process to create the project files for a C++ project are roughly:
· Open up a new workspace and use the AppWizard to select a DLL project.
· Add both the SWIG interface file (the .i file), any supporting C files, and the name of the wrapper file that will be created by SWIG (ie. example_wrap.c). Don't worry if the wrapper file doesn't exist yet--Visual Studio will keep a reference to it.

· Select the SWIG interface file and go to the settings menu. Under settings, select the "Custom Build" option.

· Enter "SWIG" in the description field.

· Enter "SWIG_Path\swig.exe –c++ -java -o $(ProjDir)\$(InputName)_wrap.c $(InputPath)" in the "Build command(s) field". It does not matter where the SWIG is stored, but make sure the SWIG_Path has no space. Visual C++ 6 has its problem with it.

· Enter "$(ProjDir)\$(InputName)_wrap.cxx" in the "Output files(s) field".

· Next, select the settings for the entire project and go to C/C++ tab and select the Preprocessor category . Add the include directories to the JNI header files under "Additional include directories", eg "C:\jdk1.3\include,C:\jdk1.3\include\win32".

· Next, select the settings for the entire project and go to Link tab and select the General category. Set the name of the output file to match the name of your Java module (ie. example.dll).

· Next, select the example.c and example_wrap.c files and go to the C/C++ tab and select the Precompiled Headers tab in the project settings. Disabling precompiled headers for these files will overcome any precompiled header errors while building.

· Finally, add the java compilation as a post build rule in the Post-build step tab in project settings, eg, "c:\jdk1.3\bin\javac *.java"

· Build your project.

Note: If using C, choose a C suffix for the wrapper file, for example example_wrap.c. Use _wrap.c instead of _wrap.cxx in the instructions above and you don’t leave out -c++ when invoking swig.
Now, assuming all went well, SWIG will be automatically invoked when you build your project. When doing a build, any changes made to the interface file will result in SWIG being automatically invoked to produce a new version of the wrapper file.

The Java classes that SWIG output should also be compiled into .class files. To run the native code in the DLL (facedetect.dll), make sure that it is in your path then run your Java program which uses it, as described in the previous section. If the library fails to load have a look at Dynamic linking problems in the SWIG-Java documentation.
Java Application

The application in Java is built of a couple of classes. The following shows the image flow of the application.

[image: image5]
The main class Roebi (Robot) is representing the user interface. It also initializes the image displays and starts up the processing classes if requested.

· The Frame Grabber accesses the camera, captures and renders the image.

· The Image Player updates the display of the Camera Image.

· The Image Processor runs the OpenCV methods of the facedetect DLL on the Camera Image. It updates the image showing the processed picture, the facial expression visualization and calls also the Image Update Instance to update the feature displays with the detected sections of the processed picture.

· For debug reason I implemented a Manual Processor which simulates the results of the OpenCV methods (not shown on the graphic). It can be called instead of the DLL methods.

The facedetect DLL offers the following functionality:

· Amount of faces detected

· face location & size of given index

· detected feature location

· Face tracking

· gaze direction detection

Java Package Roebi

Roebi (Main Class)
	Roebi (Main Class)

	Roebi is the main class. It handles the user commands and starts the processes running in the background. The Roebi Form was created by using the NetBeans environment.

ImPanel (Display Class)
	ImPanel (Display Class)

	The ImPanel class is extending JComponent. It holds a copy of a buffered image. Its main job is to display the stored image or a part of it.

	Constructor

	There are two types of this instance:
• Displays always the complete stored image in the configured window size.
• Displays only part of the stored image in the configured window size.

	Methods

	BufferedImage
	getBufferedImage
	returns the stored buffered image

	Dimension
	getPreferedSize
	returns the dimension of the stored image

	BufferedImage
	getSubImage
	returns the asked sub image

	
	Paint
	displays the picture

	
	setBufferedImage
	updates the stored buffered image

	
	setPosition
	sets the position of the displayed sub image in respect to the stored image

	
	setPosition
	sets the position and size of the displayed sub image in respect to the stored image

FaceVis (Display Class)

	FaceVis (Graphic Display Class)

	The FaceVis class visualises the detected facaial expression.

	Methods

	
	paintComponent
	displays the drawing

	
	setExpression
	sets a complete facial expression

	
	setEyeBrow
	sets the eyebrow level

	
	setGazeDirection
	sets the gaze direction

	
	setSmile
	sets the degree of a recognised smile

ImPlayer (Processing Class)

	ImPlayer (Processing Class)

	The ImPlayer class implements Runnable, what means, it is a periodically running class. It takes the image from a FrameGrabber and passes it on to ImPanel.

	Methods

	
	run
	periodicaly runned image update

	
	setSleep
	sets sleeping time per run cycle in ms

	
	startPlaying
	starts the update process for the image panel

	
	stopPlaying
	stops the update process of the image panel

ImProcessor (Processing Class)
	ImProcessor (Processing Class)

	The ImProcessor class implements Runnable, what means, it is a periodically running class. It takes the image from a image panel, processes the native computer vision methods on it and passes it on to another image panel. It calls update methods to visualise the detected elements.

	Constructor

	There are two types of this instance:
• basic
• extended with an manual processor for simulation of the native interface result

	Methods

	
	Run
	periodicaly runned image processing and update

	
	setManSize
	input for manual processor

	
	setManX
	input for manual processor

	
	setManY
	input for manual processor

	
	setSleep
	sets sleeping time per run cycle in ms

	
	singleProcessing
	runs a single processing cycle

	
	startProcessing
	starts the image processing

	
	stopProcessing
	stops the image processing

ImWindow (Processing Class)

	ImWindow (Processing Class)

	The ImWindow class implements Runnable, what means, it is a periodically running class. It takes the image from a image panel and passes a subimage of it on to another image panel.
{not in use}

	Methods

	
	run
	periodicaly runned image update

	
	setPosition
	sets position of the subimage

	
	setSleep
	sets sleeping time per run cycle in ms

	
	startPlaying
	starts the update process for the image panel

	
	stopPlaying
	stops the update process of the image panel

ImUpdate (Helper Class)

	ImUpdate (Helper Class)

	The ImUpdate class is a passive class. It takes the image from an image panel and updates several image panel with a part of the input panel.

	Constructor

	There are three types of this instance:
• updating 1 image panel
• updating 3 different image panel
• updating 4 different image panel

	Methods

	
	Update
	updates only the images of the defined panels

	
	Update
	updates the first panel with subimage location and size

	
	Update
	updates all panels with subimage location and a relative scale factor (used to keep relative dimension)

	
	Update
	updates all panels with subimages location and size

	
	updateNr
	updates a specific panel with subimage location and size

ManProcessor (Helper Class)
	ManProcessor (Helper Class)

	This class simulates the result of the facedetect DLL return values. It modifies values from JSlider to usable expression data.

	Methods

	int
	getBX
	returns face bottom right corner X value

	int
	getBY
	returns face bottom right corner Y value

	int
	getGazeDirection
	returns gaze direction

	int
	getLateralSymetry
	returns location of lateral symetetry

	int
	getLeftEyeX
	returns location X value of left Eye

	int
	getLeftEyeY
	returns location Y value of left Eye

	int
	getMouthWidth
	returns mouth width

	int
	getMouthY
	returns location Y value of the mouth

	int
	getRightEyeX
	returns location X value of right Eye

	int
	getRightEyeY
	returns location Y value of right Eye

	int
	getTX
	returns face top left corner X value

	int
	getTY
	returns face top left corner Y value

	
	setSize
	sets the Size of the detected face

	
	setX
	set the location x value of the detected face

	
	setY
	set the location y value of the detected face

OpenCVArray (Helper Class)
	OpenCVArray (Helper Class)

	This class is used to create and access integer arrays in the native C++ environment from the Java environment

	Methods

	int[]
	getArray
	returns the whole array

	int
	getIem
	returns a specified element

	int
	getLength
	returns the length of the array

	
	setArray
	sets the values of a whole arrray

	
	setItem
	sets the value of a specified element

Java Package facedetect

These Java classes got created by SWIG. No additional manipulation was required. The only two classes meant to be used are the two classes described below. The other java class files are for the system to work properly.
CFacedetectApp (Accessor Class)
	CFacedetectApp (Accessor Class)

	This Class represents the wrapped C++ Class with all its methods. There are a couple of additional methods needed for the system to deal with the object.

	Methods

	int
	RCobj_InitFaceDetect
	returns 1 if successful initialised the C++ Class for computer vision.

(It creates a helper image for the transformations)

	int
	RCobj_detectfaces
	returns the number of found faces in the image

	
	RCobj_getObject
	returns in from of references the upper left corner and the lower right corner of the specified face

	
	RCobj_setBorder
	paints a border around the specified image. (Does not have any effect in our application, since we do not read the modified image)

	
	RCobj_detectfeatures
	returns in from of references the location of the detected features

(Eyes, mouth, mouth size, gazedirection)

	
	RCobj_trackface
	trackes specified face

(not used in our application)

	
	RCobj_detectGazeDirection
	returns gazedirection (not used in our application)

	
	RCobj_learnFaceOrientation
	teaching feature (not used in our application)

	
	RCobj_getFacialFeatures
	returns in form of references detailed feature measurements for expression visualization.

	
	…
	several Object handling helper methods

(not used in our application)

facedetect (Accessor class)

	facedetect (Accessor Class)

	This class represents all the additional elements generated from the SWIG interface file.

	Methods

	
	new_intArray
	Creates a new integer array in the C++ environment.

	
	delete_intArray
	Deletes the integer array in the C++ environment.

	int
	intArray_getitem
	returns a specified element of the array.

	
	intArray_setitem
	sets a specified element of the array.

C++ Class facedetect

The C++ code was written to group the OpenCV functionality to a single class which offers advanced image processing methods for facial feature detection and facial expression recognition. As I understand the code, it operates always on a facial image of the size 30*30 pixels. I suppose it is done this way to keep the code simple and fast.
I don’t want to go into detail how the extraction is done in this module, since I was using this code more or less as a black box which needs to be connected to the Java platform. The functionality offered of it is explained in the counterpart in Java.

There are two additional helper classes in the C++ code. Those are as I understand a connecting part to the Visual Basic user interface of the original application.

Summery

The created application can be seen as a first trial to connect OpenCV functionality to the Java platform. There has some modification to be done to make this code a robot module.

The key element of the project was to use SWIG to wrap the C++ code to make it accessible to the Java environment. It showed that the use of SWIG is basically very simple. In our case, the extended use of pointers and references needed some more advanced use of the precompiler. But the major difficulty lies in passing the image to the native environment.

Another problem I was facing was my insufficient knowledge about all involved programming languages and the used development environments.

Overall it was a time consuming project due to my background. I learned a lot, but there is still a long way to go to get myself onto the desired level of programming to handle the real image processing part in C++.
Appendix A Links
C++ Source Code resource links
Used C++ Modul: http://www.fuzzgun.btinternet.co.uk/rodney/components.htm - FaceDetection
Main page with more links to interesting code: http://www.fuzzgun.btinternet.co.uk/
Main page of his interesting robot Rodney: http://www.fuzzgun.btinternet.co.uk/rodney/rodney.htm
OpenCV links
OpenCV main page with the latest version: http://sourceforge.net/projects/opencvlibrary/
If you click on the package (not the version!) you get to the page with all the versions. I used the Beta 3.1 for Windows OpenCV_b3.1.exe. The library versions beta 3.1 and beta 4 are included to this documentation.
SWIG links
Main page of the tool: http://www.swig.org/
Java links
The Java Software Development Kit can be found at: http://java.sun.com/j2se/1.4.2/index.jsp
Java Media Framework is located at: http://java.sun.com/products/java-media/jmf/
Java Advanced Imaging (JAI) API can be found at http://java.sun.com/products/java-media/jai/
Appendix B Manuals, Tutorials & Help
All the manuals I have been using are within this whole Documentation.

OpenCV Manual

The OpenCV Manual, which comes with the installation covers not necessary on the latest features. But it explains a lot of the available features. It is also included in the complete documentation of the project.

SWIG Manual

The complete SWIG-Manual, which comes with the installation. I basically used the Java part. All the manuals are included in the complete documentation of the project.
Hint: Make sure before you try to use the SWIG precompiler, that your C/C++ code compiles completely.
Tutorials & Help
Java Tutorial & Help
Java2 Platform Class Specifications: http://java.sun.com/j2se/1.4.2/docs/api/overview-summary.html
Java Tutorial Main: http://java.sun.com/docs/books/tutorial/index.html
Java Native Interface Tutorial: http://java.sun.com/docs/books/jni/html/jniTOC.html
Java Media Framework: http://java.sun.com/products/java-media/jmf/2.1.1/guide/
Visual Basic Tutorial
Visual Basic Tutorials I used were Variables, Arrays and Image manipulation. They are all included in the complete project documentation.
OpenCV Tutorial
The OpenCV Tutorial I found on the internet did not help me much with my problems, but it might be useful for somebody else. I included it into the complete project documentation.
Appendix C Project System
Used Hardware:

Camera: Logitech QuickCam Webcam (USB)

PC: Intel Pentium M 1.7GHz, 1GB Ram
Used Software versions:

Operating System: Windows XP Professional SP2, NetFramework 1.1 Redistributiable (for original application)
C++ and VisualBasic: Visual Studio 6 (visual basic for compiling original application, not necessary)
SWIG: SWIG-1.3.24 for Windows

Java: j2sdk-1.4.2.04 for Windows, jmf-2.1.1e for Windows, jai-1.1.2-lib for Windows

C++ Computer Vision Class

using OpenCV

(DLL)

Java Application

Video Stream handling

Img processing func call

User Interface

PC running Windows XP

Java Virtual Machine

USB connection

JNI

SWIG-Precompiler

runtime

Java Program Code

Java Application

Dynamic Linked Library

Java Native Interface

C/C++ Wrapper Code

C/C++ Source Code

Thread, class running in cycles

Function call

ImProcessor

Image flow

C++ Class compiled and linked to a DLL (hidden)

Java Class (displayed image)

Java Class (hidden)

procImage

ImUpdate

facedetect DLL

(C++)

faceDisplay

mouthImage

noseImage

lEyeImage

rEyeImage

camImage

ImPlayer

Frame Grabber

C.Motch

Roebi (Java Main Class)

SWIG

Interface file

C/C++ Compiler/Linker

Java

Compiler

C++ Environment

Java Environment

SWIG elements

SWIG created Code

Code flow for compilation

runtime function call

/* File : facedetect.i */

/* specifies the module name after creation, if not specified from the SWIG call */

%module facedetect

/* header files included, don't get parsed by the SWIG. They make its way direct to the wrapper file. */

%{

#include "stdafx.h"

#include "facedetect.h"

%}

/* Let's just grab the original header file here */

/* additional integer array creation */

%include "carrays.i"

%array_functions(int, intArray);

/* special type maps for references passed to the methods. This needs to be done, before the complete class gets wrapped, otherwise the SWIG can not apply the wrapped types */

%include "typemaps.i"

%apply int *OUTPUT {int &tx};

%apply int *OUTPUT {int &ty};

%apply int *OUTPUT {int &bx};

%apply int *OUTPUT {int &by};

void CFacedetectApp::RCobj_getObject(int index, int &tx, int &ty, int &bx, int &by);

/* wrapping of entire header file. With the already wrapped critical methods the SWIG can wrap now the rest easy stuff */

%include "facedetect.h"

SWIG Call

Language specific Options

(Package Option & Package Name)

Interface File

Target Language

Source Code Language

(Required if C++, default C)

C:\SWIG>swig.exe -c++ -java -package facedetect facedetect.i

ECE 578 Projcet Doc 2005.doc
3/24/2005
16/16

[image: image7.wmf][image: image8.png]

