Intelligent Robotics I (ECE 478/578)

Project Report

Chris Motch
Project Summary

The goal of the project was to build a library of vision functions that could easily be integrated into the main control software. The primary use of these functions initially will be for motion tracking and color detection. The project itself is fairly open ended in respect that it will be continually developed to provide more complex functionality like gesture recognition more complex object recognition.

Introduction

The intention of this project is to develop and implement a subset of functions that can be used to capture from a camera and be used for Machine Vision. The initial goal was to get some rudimentary functionality working like simple object recognition, edge detection and color detection. This would give an initial set of building blocks which I could continue to expand to create more complex functionality, like gesture and face recognition. This was all going to be done using the Java language. Java was chosen for its ease of use, platform independence as well as easy modularity and integration with other Java code.

The initial steps of this project to were to understand how computer / robotic vision works. I had never done anything like this before so I had to start from the beginning, learning the processes in capturing the data from the camera, taking that captured information and processing it.

Stage 1 Capturing data from a camera

The first part of the project was to be able to capture data from a camera and just be able to display it in a window. That way I can verify the data capture process is working as well as make sure that the quality of the image is appropriate.

Initially I went down the avenue of using the TWAIN interface and drivers to capture data from the webcam, TWAIN is a common interface used by all scanners and cameras under the Windows Operating system, it allows for easy interfacing with these devices. The Java language doesn’t support this interface natively so I found some code online that someone had written to do this. However the main drawback to this code was that it relied on the JNI and a Windows DLL, this meant that if I was to use this system I would be stuck with using Windows only.
After doing some research I discovered that Sun actually has their own framework for interacting with Camera, video capture etc. Its known as the Java Media Framework and is available for Windows, Linux and Solaris platforms, this would allow a lot more flexibility, and also with the backing of Sun, provide a more robust way of capturing data from cameras.
The media framework comes with a lot of extra functionality, however I only needed to be able capture the images and convert them into java.AWT.image format. I choose the AWT.image format because of code that I had already was using this format or a close deritive of the format, I decided to standardize around this format since others had chosen this format, including Sun.
Taking some sample code from Sun’s website and integrating it with some code I had already downloaded from the web I was able to capture images from the web cam and display them on screen. There currently was no processing being done, just literally capturing images. However there were some problems with this process. Firstly there was a large delay between what was actually happening in front of the camera and what was being displayed. This was due to the way I had initially set up the capturing process. I had two threads running; one was for the interface while the other was running every 50 ms to capture images from the camera.

The problem with this approach is by the time the thread captured the image, displayed it etc, there was a noticeable lag. The solution once looking on Sun’s site was to use 3 threads. Thread one would be for the interface, thread two was dedicated just to capturing images from the camera, updating a variable with the latest image. Thread 3 was to take that variable with the image and display it. This eliminated the large lag time because thread 2 was independent of the other threads, its sole purpose was to capture images. Thread 3 purpose was just to take the already captured image and display it, this increased the framerate to around 25 frames per second (fps)

Stage 2 Initial Processing
Now that I had gotten the capture process to work and I was getting reliable data from the camera, it was now time to implement some processing on the incoming data. Since I was capturing the image and using the AWT.image format it was very easy for me to able to manipulate the image. The first question was how, I had never done any vision processing before so I had to investigate the types of processing that could be done, and how they all tied together. I was lent a book on image processing in Java, and I also did some research on the web as well as in the library. One of the first functions I wanted to implement was edge detection. Edge detection works by finding the edges in a surface, these edges are usually characterized by a dramatic change in color. There are many types of algorithms to perform this operation. Most work on a 3x3 matrix operation that Java and JMF natively supports. I decided to implement more than one edge detection operation, my goal was to provide a library of functions so I wanted to provide as much choice as possible, I choose to implement sobel, freichen, Roberts and prewitt. Each has two functions associated, horizontal and vertical edge detection.
Once I had implemented the edge detection it was apparent alone these were not that useful. I had found a function online as part of one of the many packages that I downloaded that would take an image and create a binarization of that image. Meaning it would turn the image into pure black and white, this is achieved by checking each pixel within the image and determining whether it falls within a certain threshold, if it does it is deemed a white pixel otherwise a black one. This creates a rather interesting image, but it also helps us quite a lot since a lot of the processing is done on this type of output image.

One thing I did notice about the binary image was that there was a little of noise in the image, the camera itself was low quality and this noise was being caused by this. This could obviously effect the processing and its accuracy so I decided that a Gaussian blur would actually help improve this. I decide to choose the Gaussian blur because of prior work with Adobe Photoshop and graphics work, a Gaussian blur will literally help remove a lot of the noise in an image but blurring it slightly, the effect on the quality of the image is not highly noticeable, but the noise removal is very efficient.

I didn’t know how to implement this function so I did some searching on the web and found exactly what I needed. The code I found was written as a plug-in for a graphic editing application, after tweaking the code and interfacing with my framework, I could perform Gaussian blurs on my data.

Stage 3 chaining the different functions together

After implementing the different functions, the next stage was to chain them together to provide a useful output. The functions alone by themselves are not very useful, tying them together provides more useful output. My initial idea was to first perform the Gaussian blur on the image, this would eliminate a lot of the noise, then to take the output of the Gaussian blur and input it into the binarization function. The output of the binarization function would give a much cleaner image. Then I decided to input this new image into the edge detection functions, that way the edge detection would give me a simple outline of all the edges in the image. There were some issues with this, firstly the output image wasn’t very useful, it just displayed some lines that resembled somewhat the original image, and also the output didn’t seem to be picking up all the obvious edges.
I then decided for visual purposes to take the output of the edge detection and superimpose it on the original image, using image addition. I wrote a function that would take two images and add them together, that way the white lines from the edge detection would lay on top of the original image, that way it was easy to see how the edge detection was working.

This gave me results that I had anticipated, however there was still one thing missing, it took me a little while to figure it out too, the current edge detection was either doing horizontal and vertical edge detection, not both at the same time. This led to a new problem, I first tried to chain two edge detection operations together, not realizing at the time that the output of one would be useless for the other, only when I tested this did I realize that I can’t do it this particular way.
I decided that initially I would have to cache the image, apply the cached version once to the edge detection, then save that output, then take the cached image and apply it to the second edge detection, this is of course all after the previous functions. I would then have two images that had the edge detection routines applied, then I would use my addition function to add the two images together, this in theory would give me a more detailed outline of the edges, since it would combine both horizontal and vertical edge detection algorithms. I then added the original image to the output of the summation of the two edge detection algorithms, this gave a much better result, and the edges were easily apparent and were in both directions. However the downfall of this was now with all the processing that was going on, the framerate dropped down to 1fps.

After looking over some of my code, I realized I could optimize the addition functions significantly, I had implement and if statement, the problem with this was that each function was being looped 76800 times for each frame, I removed the if statement and instead using some basic logic to work out the necessary functions in theory this will be quicker since there is no conditional involved, so in the JVM it would be faster because its using logical operators.

This optimization didn’t seem to make a large difference in the framerate, however I’m confident with some more tweaking this can be improved.

The output of this combination of functions may not be very useful in its current form, but it’s a great start and good precursor to the more complex processing, the one processing I will focus on is gesture recognition, being able to pick out hand movements, and gestures. I think the use of a neural network on these output images could be used to provide feedback and determine the type of gesture that is occurring.

Stage 4 color detection

One other function I wanted to add was to be able to do color detection. I found a toolkit that one of the Sun Java engineers had written to interface java with the Lego mindstorms robot kit. Within this toolkit was color detection. I analyzed the source and then took the pieces to do with color detection and integrated them in with my code. This was by far the hardest part of the project since the color detection piece was quite different to how I was doing things, breaking out the output and input images, implementing and calling the color detection routines etc. The first part was to break out the color detection functions to be able to accept the AWT.image format. Then the function itself returned whether it actually saw certain colors, it was initially setup to see Red, Green and blue.

Once the function saw a particular color, the object was then fed into another function, which would actually find where that object is and draw an outline around the object. I initially just took the code that had been written and used it. I ran into quite a few problems that took a lot of time to resolve. The first main problem was that when I was writing the outline of the color to the screen it was just a pure white line, there was no easy determination what color was being seen. I modified the code to draw a Red, Green or blue line depending on the color seen. This just gave a better visual response to the user, so they can determine what was going on.

The next major hurdle was the problem with the actually detection of colored objects, the process would not see objects far away, and initially I would have to hold the object extremely close up to the camera, to the point where it was taking up the entire picture. It took me a while to figure out this problem, the code had a threshold set that would trigger when a certain amount of the image had color, it was initially set to 300 pixels. I wasn’t sure if that was 300 pixels square, or just 300 pixels, but adjusting this to a lot smaller number resulted in much more accurate detection. I dropped it down first to 100 and the object could be seen a little further away but it was still not useful. I eventually dropped down the threshold to 25 pixels. It would then be able to see smaller objects as well as larger objects further away.
Once done though another problem has apparent, the lighting of the room the camera was in dramatically affected the color detection algorithms, the camera quality played a big part too. Colors like blue and green would look washed out and pale, this different in color made it so the camera wouldn’t pick them up so well and hence the algorithms would not see the color. The best color was to use red, it showed up the best in most conditions, but even then it was apparent that lighting played a big part in all aspects of machine vision.

The best conditions seemed to be in a room with lots of lighting, but the camera itself couldn’t be directly under a light, and the light itself couldn’t be seen on the camera, the best place for this was the robotics lab on one of the benches, once this was set up, it would be able to pick up objects easily, we tried this with some wooden building blocks that were in the lab, the algorithm was actually capable highlighting the block and following it, however one problem still existed, the box that was being drawn was actually offset from the object. Upon inspection of the code, the box drawing function actually had an offset coded into it, not sure why this offset would be there, and I removed it and tested. The box was now being drawn exactly around the object, it was apparent now what was being tracked, the box would follow the object and it appeared to be working as I envisioned.
Upon completion of this area of my code it was decided that this was more than enough to satisfy the current requirements of the project, I had achieved a lot in the weeks, from being able to just capture images from a webcam in Java, to actually processing those images and doing color detection on those images.

Future Work
The current set of functions are quite basic right now, they are the more foundational building blocks of machine vision. However to make the vision more useful it will be necessary to implement lot more complex functions. One function that would be highly useful would be gesture recognition, the robot would be able to determine the kind of gesture it was seeing and react accordingly, there currently doesn’t seem to be much work in this area and would be a good opportunity to learn more about machine vision

Some code optimizations also need to take place, currently the raw framerate out of the camera hovers around 25fps, the camera is capable of capturing at 30fps, however there is thread issue where one thread is having to wait for the image to appear, it’s a timing issue that I believe can be resolved, maybe a notification that will occur to the two threads.

Other optimizations that can happen are in the functions themselves, currently the processes are slow due to the multiple functions and their iterations within them, combining the functions together and their iterations might help speed up things, rather than looping in 4 or 5 functions, we only loop through the image once and process the pixels accordingly, this may not be possible all the time since a lot of the processing relies on 3x3 matrix of pixels.

Other areas I could focus on is to implement a lot more functions, to try and build a much more complete library, the goal is to be able to use the library in more than just the current robotics project, to be able to use it in multiple instances, one such use of this library would be with the robotic soccer robots.

Conclusion
The project itself was challenging in many ways, I had never done any type of machine vision before, the extent of my knowledge was ideas that I derived from little bits of information on the internet. Investigation deeper made me realize that machine vision is a very difficult and complex area of research, some areas are more researched than others, but it opened my eyes to a lot of new ideas.

Luckily because of the large amount of research already, there was also a lot of code available on the web, it was a matter of taking the code that was available and manipulating it. A lot of the code I found was built for a specific purpose with no intention of being interface with other functions or code, my job was to take these chunks of code and integrate and create a library for use in our machine vision processing.

There were some hurdles when it came to integrating the functions, some of these were easily overcome with written some of my own functions to easily tie them together, other problems were solved by looking at the code more closely and understanding how it worked.

The other major hurdle faced was how environment can dramatically affect the vision processing, if the lighting is not perfect, it can affect the accuracy and quality of the vision processing, and this can easily be controlled by controlling the environment.

So to conclude the project itself was a success, I achieved what I initially set out to do, as well as be able to expand and make more ideas on what future functionality can be added. The goals of the next phase of the project will be to implement gesture recognition, I envision this will use a neural network to take the input from the output of the edge detection and determine what kind of gesture is happening, right now I have a few ideas how to implement this, I also have a book that I got from the library that I believe will help me in this endeavor.
References
Sun Microsystems

http://java.sun.com
Machine Vision Agorithms in Java

(Paul F. Whelan and Derek Molloy)

